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PRELIMINARYSTUDY OF URANIUM OXIDE DISSOLUTION IN SIMULATEDLUNG FLUID*

by

R. C. Scripsick,K. C. Crist, M. I. Tillery,
S. C. Soderholm,and S, J. Rothenberg

ABSTRACT

Depleted uranium oxide aerosols prepared in the
laboratoryand collected in the field were tested to
characterizetheir dissolution in simulatedlung fluid
and to determinehow dissolutio~is affectedby
aerosol preparationhistories. Respirablefraction
samples of each study material were subjectedto in
vitro dissolutionanalysis.

—

Particulartrends regardingthe physiochemical
character of uranium oxides describedby other
investigatorswere supportedby the data generated in
this study. The data suggest that under some
conditions a rapidly dissolvinguranium fractionmay
be formed concurrentwith the productionof U02.
This fractionmay play an importantrole in
determiningthe hazard potential associatedwith
inhalationexposure to certain uranium aerosols.

I. INTRODUCTION

Depleted uranium (DU), a by-productof the uranium fuel cycle,’ has been

selected by the US military for use in several types of munitions.2 During

development,manufacture,testing, deployment,and use of these munitions,

*This effort began November27, 1981, and was completed on
September30, 1983. Jimmy C. Cornette (DLOE)managed the program for the
Air Force Armament Laboratory. Portions of this work were performed as
part of the thesis work of Kevin Crist for a master’s degree from Texas
A and M University,College Station, Texas.



opportunitiesexist for inhalationexposure to various (usuallyoxide) aerosol

forms of DU.2 The release of respirableaerosolmaterial from test firings

and burning of DU penetratorshas been demonstrated.3-7 Inhalation

exposures during the manufactureof the munitions have been reported.8

The hazard potential associatedwith such exposures is closely related to

the dynamic partitioningof the DU material deposited in lung. Material

retained in lung tissue presents a hazard because of the radiationdose to

lungog As material is transportedto blood, the primary hazard shifts to

chemical kidney damage.9

In general, the physiochemical form of the exposurematerial affects the

partitioningof depositedmaterial.10 Aerodynamicaerosol size determines

lung depositionpattern. Material deposited in differentregions of the lung

is cleared by different paths, rates, and mechanisms. Three lung clearance

pathways have been defined: (1) transport to lymph node, (2) transportto

gastrointestinaltract, and (3) transportdirectly to blood. The fraction of

depositedmaterial cleared by each of these pathways is dependenton the in—
vivo dissolutionbehavior of the depositedmaterial.10 Consequently,the

aerosol size and the dissolutionbehavior are the importantvariables in

describingthe partitioningof depositedmaterial.

Mercerll has derived a theoreticalrelation between dissolutionbehavior

and chemical form and specific surface area (Sp) of a lognormaldistribution

of particles. He found that the mass fraction remaining (M(t)/Me) at time t

(for M(t)/Mo > ‘0.2) can be approximatedby

(1)M(t)/Mo = 12Xp(-At) s

where

M(t) = mass remainingat time t;

‘o = mass at initialtime to;

1 = 1.18 Spo.k, whichis the lo~~-termdissolutionrate

constant derived by Mercer;

k . the chemical dissolutionrate constant; and

Spo = sp~ific surface area

Several investigatorshave exper

of uraniummaterial under conditions

2

at t = O.

mentally studied the dissolutionbehavior

simulatingthe dissolutionenvironmentof



the lung.12-18 Of these studies, all those that displayeddissolutiondata
14-18as a function of time showed phased-dissolutionbehavior;that is,

dissolutionstarts with a relativelyrapid initialdissolutionphase followed

by a long-termdissolutionphase, which is characterizedby a slower

dissolutionrate. The initial dissolutionphase may includemore than one

dissolutioncomponent,each having a characteristicrate, the slowest of which

is greater than the long-termdissolutionrate.

In one study16 of uranium “yellowcake,” Eidson attributedthe initial

dissolutionphase to the ammonium diuranatecomponentof the yellow cake.

Follow-upanimal inhalationstudies,19 using the same yellow-cake study

material, support this contention and, along with human excretiondata cited.-
15 demonstratethe abi”by Eidson,

predict in vivo dissolution.

Some of the more recent stud

behavior by a sum of exponential

Jl_

ity of in vitro dissolutionanalysisto

es15,16,18have described this dissolution

terms of the form

(2)M(t)/Mo =1 fi ● exp(-kit) s

i=l

where fi is the fraction of the material associatedwith dissolution

component i and dissolvingwith dissolutionrate constant xi, and n is the

number of dissolutioncomponents. The dissolutionhalf-times,

Ti = (ln2)/~i, for the initial dissolutionphase varied from a fraction of

a day to ’12 days. The long-termphase varied from 40 days to ’800 days. In

a study of uranium oxide aerosols produced during test firing of DU

penetrators,6as much as 49 per cent of the uranium material dissolved in

the initial dissolutionphase.

In this investigation,DU material prepared from DU penetratorsoxidized

under various controlledconditions in the laboratoryand material collected

in the field from test firings of.DU penetratorswere studied using in vitro

dissolutionanalysis techniques. In addition, the sample material was

analyzedfor uranium compounds using x-ray diffraction,and the Sp of certain

study material was measured before and after dissolution. These data were

interpretedto describe

relate this behavior to

the dissolutionbehavior of these materials and to

certain physical parametersof the study materials.

3



Inferencesregardingthe hazard potentialassociatedwith inhalationof the

study materials are made from the data.

II. MATERIALSAND METHODS

A. Study Materials—
Five DU study materials produced in the laboratorywere examined by

exposing uranium alloy penetratorsto certain controlledoxidation

atmospheres.7 In addition,two DU study materials collectedfrom an

enclosed test bunker were provided by the United States Air Force (USAF).

Table I gives a descriptionof each of the study materials.

The five laboratorystudy materials were produced from XM774-typeantitank

munitions penetrators. The penetratorsare machined from DU metal alloy
20 oxidationof the perpetratorstookPlace incontaining0.75 wt% titanium.

a tube furnace that permittedthe control of tanperature,atmosphere

composition,and gas flow. The conditionsunder which oxidationtook place

are detailed in Table I. Material that fell off or could be brushed off the

penetratorsafter the oxidationtreatmentwas collected and comprisesthe

laboratorystudy materials.

The two bunker study materialswere collected by the USAF at an enclosed

test bunker used for test firings of various DU penetratormunitions (Table

I). One study material (S682-2)was collected as a core sample of the bunker

material; the other (S682-1)was collectedby the bunker air-cleaningsystem.

These materialswere described by the USAF as containing‘1O and ’20 wt%

uranium, respectively. The magnitude of these uranium concentrationsis

supportedby duplicatechemical analyses performed at Los Alamos. The major

componentof the bunker study materialswas found to be Si02.

TABLE I

DEPLETED-URANIUMSTUDY MATERIALS

Study Material No. Treatment—..

A774-2 600”C with airflow
A774-4 700~C with airflow
A774-5 9000C with airflow
M774-1 500 C with C02/airflow
N774-1 700”C without airflow
S682-2 Bunker core sample
S682-1 Bunker air sample



B. Sample Generation—
Each study material was generated as an aerosol, and a respirablesize

fraction of the aerosol was collected (Fig. 1). Before aerosol generation,

the bulk study material was sieved, and the portion passing a 400-mesh (38-urn

mesh size) screen was collected. We pressed an aliquot of the sieved material

into a speciallymade thimble, taking care not to disturb the particle size of

the sample. The packed thimble was mounted on a Wright dust feedzl that was

used to generate aerosol. The dust feed operates by rotating a sample plug

against a radially positionedblade that is continuallyswept by a jet of

clean air, which suspends the material scraped from the plug. The output of

this generatorwas conducted to a horizontalelutriatoroperated to pass an

aerosol that meets the British Medical Research Council criterion22 as the

respirablefraction of the challenge aerosol. Sets of samples representing

each study material were collected on 25-mm-diam (5-urnpore size) Millipore

membrane filters.

c. DissolutionAnalysis

Before subjectingthe respirablefraction samples to dissolutionanalysis,

we determinedthe mass of uranium (Mo) on each filter using a gross gamma

radiometric

measure the

activity to

Once M.

technique. The technique uses a NaI scintillationdetector to

gamma activity associatedwith the sample. Standardsto relate

M. were prepared using the laboratorystudy materials.

was determined,the filter containing the respirablefraction

uranium sample was sandwichedbetween two 25-mm-diam(O.l-Pmpore size)

Nucleoporemembrane filters and placed in a dissolutionchamber. The chamber

(Fig. 2) used was a one-sidedflow system described by Allen17 and designed

by MOSS.
23

FILTERED
IN-LINE

DILUENT
SAMPLE AlRAT
HOLDER

r+=

ATMOSPHERIC
PRESSURE

I HORIZONTAL WRIGHT FILTERED

ELUTRIATOR DUST FEED ~ Compressed
AIR

nPUMP

Fig. 1. Respirableaerosol generationsystem.
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Fig. 2. The dissolutionchamber.

The solvent used in the study was a lung-fluidsimulantdescribed by

MOSS.24 The componentsof the solution are shown in Table II. A comparison
15completed by Kalkwarf showed that the simulant and the lung interstitial

fluid are almost identical. The protein components in actual lung fluid were

representedby equivalent amounts of citrate as suggestedby Moss.24 The

lung–fluidsimulantwas prepared in 156-L batches using deionizedwater. To

TABLE 11

COMPONENTSOF THE SIMULATED LUNG SOLUTION

Component

Magnesium chloride, hexahydrate
Sodium chloride
Potassiumchloride
Sodium phosphate,dibasic, anhydrous
Sodium sulfate, anhydrous
Calcium chloride,dihydrate
Sodium acetate, trihydrate
Sodium bicarbonate
Sodium citrate, dihydrate

Concentration
(g/L)

0.203
6.019
0.298
0.142
0.071
0.368
0.953
2.604
0.097

6



increasethe rate of solution,95 per cent of the final volume of water was

preheatedto 37”C. The salts were separatelypremixed using the remainderof

the water volume to aid in their dissolution. The salt solutionswere then

transferredto the preheatedwater in the order listed in Table II. During

this procedure,the pliof the solutionwould

precipitate. This precipitateformationwas

approximately7 with dilute HCL.

The lung-fluidsimulantwas deliveredto

increase (PH 8-9), causing a

controlledby loweringthe pH to

the dissolutionchamber by a

peristalticpump at a flow rate of -1 mL/min. Accordingto Allen,17 -if the

rate of flow through the dissolutionchamber is kept above 0.7 mL/min, then

dissolutionrate will be independentof the flow rate. The pH of the simulant

was maintained at 7.4 ~ 0.1 by slowly bubbling 95 per cent 02 and 5 per cent

C02 through the simulant, as suggestedby MOSS.24 The temperatureof the

simulantwas maintained at 37°C + 0.5°C in a water bath. The pH and—
temperatureof the simulantwere monitored during the experiments,which were

operated for at least 30 days.

Simulant passing out of the dissolutionchamber was sampled at known

times. The samples were collected in polyethylenebags, which were heat

sealed and placed in pneumatic “rabbits”for delayed-neutronactivation (DNA)

analysis. This DNA techniquewas selected over fluorometricmethods normally

used in uranium dissolutionstudies because (1) the simpler sample handling

reduced potential errors in sample analysis, (2) the automatedsystem at Los

Alamos permitted the analysis of many more samples for a given effort, and (3)

the sensitivityof the DNA technique allowed direct measurementof the

dissolved uranium.

Standardsfor the DNA analysiswere prepared using National Bureau of

Standards uranium standard referencematerial 950a, which is natural–abundance

‘3°8” The difference in 235U abundancebetween the standardmaterial

and the study materials was accountedfor in the calculationof uranium mass

from DNA results.

Blank samples (sampleswith no added uranium) for the DNA analysis were

obtained using a dissolutionsandwich containing a middle filter on which no

uranium material had been collected. Dissolutionof this sandwichwas carried

out simultaneouslywith the dissolutionof the respirable–fractionsamples

using simulantfrom the same reservoir. These samples were collected and

analyzed in the same manner as the samples from the other dissolutionsystem.

7



D. X-ray DiffractionAnalysis

The compositionof bulk and respirablefraction samples was determined

using x-ray diffraction. The method, which followed the procedureoutlined by

Klug,25 used a standard verticaldiffractometerwith a graphite

monochrometerand a proportionaldetector. This techniquepermits the

determinationof species and quantity of crystallinematerials and can detect

the presenceof anmrphousmaterials at levels >10-20wPJ. To ascertainthe

percentageof uranium oxide present as the dioxide, standardswere prepared
from well-characterized,selected U02 and U308 powders. A calibration

curve was then drawn from which the results were obtained. The analysiswas

performed by the PhysicalMetallurgyGroup at Los Alamos.

E. SpecificSurface Area Analysis——— ————
The Sp of certain respirablefraction samples was measured using a 85Kr

26 This technique comparesradiometrictechniquedeveloped by Rothenberg.

the amount of radioactivityadsorbed on a sample with the amount adsorbed on a

sample of standard Sp material. The analysiswas performed at Lovelace

InhalationToxicologyResearch Institute. The samples selectedfor SP

analysis includedrespirablefraction samples of study materials A774–4 and

M774–1 and others of these same samplesthat had undergone dissolution

analysis.

III. DATAANALYSISAND RESULTS

From the DNA data and values of Mo, estimatesof the fraction of

remaininguraniumdissolvedper day (fd) were calculatedas follows:

f ‘j -_—.._-d,j= —..

[(

J
x( ‘k )(+ ‘k-1 * “tk-tk ~

d“

)1

)
‘O - k=~ — 7P d -

where

lllj andmk = the mass of uranium in the jth and kth samples,

respectively;

tk = elapsed time, in days, to the midpoint of the sample

collectionperiod; and

d = duration of sample collection,in days.

8
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The results of these calculationswere plot~ed against time for each of the

study materials. Curves were fit to these data using a nonlinear least-
27squares fitting routine with the variance of each fd value weighting the

fit. The plots with the fitted curves are shown in Figs. 3-6. These plots

demonstratethe multiple phase behavior describedearlier. These data were

fit with a model of the form

~d = M(t - W:)M-tM(t + d/2) .

Substitutingfor M(t) from Eq. 2 yields

n [sinh(d~i).fi.exp(-ait)]
fd =

E 9

;
i=l d“[n fi.exp(-~it)]

i=

(4)

(5)

where n is the number of dissolutioncomponents included in the fit.

The fitting routine would not converge for n > 2 even though a

three-component(n = 3) fit seemed appropriatefrom inspectionof the plots.

Fitting of all the data in any given data set with n = 2 resulted in large

systematicresiduals between data points predictedfrom the fitted curve and

actual data points. A large negative bias was displayed by each of the data

sets in the region correspondingto the first of the three observed

dissolutioncomponents. Consequently,data correspondingto the latter two of

the three observed dissolutioncomponents were fit with n = 2, which resulted

in improvedfits to the data includingsubstantialreductionof the large

systematicbias. The values of the regressioncoefficientsfor these fits are

listed in Table III. Characterization of the earliest observed dissolution

componentwas limited to estimatesof fl (see Table III) and a lower limit

on A1“ The value of kz was used as the lower limit of al.

For sufficientlylarge t, fd becomes time independentand takes on the

value of A3. Conservativeestimates were made when the contributionof the

first two dissolutioncomponentsto the overall dissolutionrate became

insignificant. The average value of fd correspondingto times beyond this

9
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point was computed as an estimate of X3. This value of a3 was considered

to be free of influencefrom earlier fd values that affect the estimationof

X3 by the least-squaresmethod mentioned above. Table IV gives the values
of 13 obtained by this analyticalmethod. Multiple-comparisonsanalysis

performed using these results indicateda significantdifference (at the 95

per cent confidenceinterval)between the k3 values associatedwith study

materials S682-2 and S682–1 and between the values associatedwith study

materials A774-2 and N774-1.

The results of x-ray diffractionanalysis of the bulk and respirable

fraction samples indicatedthat the crystallineuranium in the samples was

‘3°8 and ’02” Table V shows the percentageof the sample that was

- the balance of the crystallineuranium material was U308.’02’
Amrphous material was detected in the respirablefraction sample of the

bunker air sample material (S682-1). The fraction of the sample associated

with amorphousmaterial was estimated to be -20 wt%.

Results of the Sp analysis are displayed in Table VI. The Sp associated

with the samples ranged from 0.64 m2/g to 3.85 m2/g. For both study

materials,the Sp of the post–dissolutionsamples was lower than the Sp of the

pre-dissolutionsamples. The average fractionaldecrease in Sp was 52 per

cent.

TABLE IV

LONG-TERM PHASE DISSOLUTIONPARAMETERSCALCULATEDUSING
AVERAGINGTECHNIQUE

Study
Material

No..——

A774-2
A774-4

A774-5

M774-lC

N774-1

S682-2

‘3
Na (Days-l)—

16 2.1 x 10-3 * 2 x l_o-4b
15 2.6 X 10-3 * 2 X 1.0-4

18 3.0 x 10-3 + 3 x IO-4

22 2.9 X 10-3 * 5 X 10-4

27 3.8 X 10-3 *4x 10-4

22 1.5 x 10-3 * 3 x 10-4

‘3
(Days)

330 * 30

260 * 20

230 + 20

240 * 45

180 * 21

480 ● 85

S682-1 25 3.8 X 10-3 * 4 X 10-4 180 ● 20

a Number of data points associatedwith analysis.
bValue * standarddeviation.
conly one of the replicate sets of data for this material Was
analyzedby this technique.
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Study
Material

No.—...

A774-2

A774-4

A774-5

M774-1

N774-1

S682-2

S682-1

TABLE V

RESULTS OF X-RAY DIFFRACTIONANALYSIS

U02

(wt~ in sample)a
ITespirableFraction Bulk-——

<oozb 0.6

<0.2 1.6

1.3 18b

<0.2 <0.2

0.2 6

54 97

18 60

-—
aRemaindersare U308.
bThe error in this estimate is <*2O per cent of this value. The
error in the other estimates is <*1O per cent of the respective
values.

TABLE VI

RESULTS OF SPECIFICSURFACE AREA (SP) ANALYSIS

Specific Surface Area

Study Material Pre-Dissolution Post-Oissolution Decrease
No. (mZ/g) (mZ/g) (%)——-

A774-4 l.~a 0.64 65

!4774-1 3.85 2.36 39

-or in Sp estimate is <*5 per cent of the respectivevalue.

Iv. DISCUSSIONAND CONCLUSIONS

In all of the previouslycited uranium dissolutionstudies, an initial

dissolutionphase was evident.13J14S6315S16S18 Review of Steckle’s

studies13of laboratory-producedmixtures of U308 and Uoz and

Kalkwarf’sstudy15 of lJ308“pure referencematerial” show that, at most,

only a few per cent of the material dissolve in the initialphase. The

respirablefraction of the laboratorystudy materialsexamined had between 6
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and 10 per cent of the material dominatingdissolutionduring the initial

phase. Only ‘4 per cent of the respirablefraction of the bunker core sample

material (S682-2)was associatedwith initial phase dissolution. The

respirablefraction of the bunker air-samplemal

similar samples studied by Glissmeyer6had from

material associatedwith initial phase dissolut

larger fraction of material suspendedduring DU

erial (S682-1) studied and

11 to 49 per cent of the

on. These data suggest that a

penetratortest firings may be

readily availablefor systemiccontaminationthan would be indicatedby the

clearanceclassificationsof U308 and U02 10,14,15or the results of
13,15in vitro studies of laboratory-preparedU308 and U02 material.

The initial phase dissolutionrates observed in this study ranged from

less than

they were

clearance

deposited

deposited

for class

0.07 days to 2 days. These rates are of such a magnitude that if

observed in vivo as clearance rates from lung to blood, this

pathway would compete with other clearance pathways for material

in lung. This competitionwould result in a larger portion of the

material being transportedfrom lung to blood than would be expected

“Y” materials. In addition,clearance of material from lung to

blood at such rates could result in accumulationof material in organs such as

kidney that have slower clearance rates to urine (kidneyhalf-timeclearance

to urine is six days or greater) than the rate at which material would be

transportedto blood.

The long-termdissolutionhalf-timesobserved here (from 180 days to 480

days) fall in the range of long-termhalf-timesfound by Eidson16 for

similar materials (from 140 days to 500 days). These half-timesalso agree

with the “Y” clearance classificationsassigned to U308 and
U. 10,14,15
2“
The range of long--termdissolutionhalf-timesrelating to long-term lung

clearance half-timesmay not be sufficientlylarge to warrant the assignment

of the long-termcomponent to different hazard classifications. For example,

the long-termcomponentswould qualify for a “Y” classificationunder the Task

Group on Lung Dynamics classificationscheme.10 However,the range of

material fractions dissolving in the initial dissolutionphase is probably

large enough to warrant assigningsignificantlydifferent hazard potentialsto

the various study materials for many exposure scenarios.

The trend of uranium-to-oxygenratio increasingwith preparation

temperaturedescribed by Steckle13 and Elder7 was corroboratedby the
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results of the x-ray diffractionanalysison both bulk and respirablefraction

of the laboratorystudy materials. The increasedU02 content in material,

prepared under no-gas-flowconditions (N774-1)with respect to material

produced in airflow (A774-4)reported by Elder,7 was also observed.

A significantdifference in the U02 content between bulk and respirable

fraction samples was observed in all study materials. Glissmeyer6noticed a

similar size segregation. The direction of this segregation,namely, that

U308 is associatedwith the smaller particle sizes, agrees with data
13 7presented by Steckle and Elder.

This finding points out the importanceof performingdissolutionanalysis

and other analyseson appropriatesize-selectedsamples. Analysis of bulk

material or even total particulatesamples may result in inaccurate

predictionsof lung clearance rates and/or incorrectassociationsbetween

dissolutionhalf-timesand physiochemical characterof study material. These

inaccuratepredictionsand incorrectassociations,in additionto being

related to differencesin the physical character of deposited and study

materials,may also be related to chemical differencesin these materials.
The bunker study materials (S682-2 and S682-1) had a higher U02 cofltent

than did the laboratorymaterials. A relativelyhigh U02 content WaS also

evident in the material studied by Glissmeyer.6 In light of the thermal

history effect on compositiondescribed above, the elevated U02 levels

indicatethat the bunker study materials may have been produced at higher

temperaturesthan were the laboratorysamples. The higherU02 content maY

also have been a result of rapid quenchingof the material after heating.

Eidson16 attributedthe initialphase seen in the dissolutionof

yellow-cake samples to the presence of ammonium diuranate,a rapidly

dissolvinguranium material. The relativelylarge amount of material

dissolved in the initial dissolutionphase of bunker air sample material

(S682-1)may be related to the productionof a rapidly dissolving fraction in

the test firing of penetrators. Because the rapidly dissolvingfractionwas

observed to a lesser degree in the bunker core sample material (S682-2),the

fractionmay include particleswith relativelylow settling velocities,

which as a consequencefor a given specific gravity,would have a relatively

high Sp. The fact that ’20 wt% of the respirablefraction sample of study

material S682-1 was found to be amorphousand that this amorphousmaterialmay

contain uranium suggests that at least a portion of the rapidly dissolving
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fractionmaybe rapidly dissolvingamorphousuranium compounds. Therefore,

rather than chemical characterof the material alone accountingfor initial

phase dissolutionas Eidson found for yellow cake, initial phase dissolution

for material S682-1 may be a consequenceof the physical characterof the

material as well as of the chemical compositionof the material.

The initial dissolutionphase observed for the bunker core sample material

(S682-2)and the laboratorystudy materials may also result from the physical

and chemical characterof these study materials. Pre- and post-dissolutionSp

analysisof the respirablefraction of two laboratorystudy materials (A774-4

and M774-1) showed Sp at the end of the dissolutionexperimentto be lower

than the initial Sp of the materials. Such behavior is predictedfor

single-componentmaterials, which are lognormallydistributedin diameter with

geometric standard deviationsgreater than ‘1.135 (see Appendix). However,

the multiple-phasedissolutionbehavior observed here indicatesthat the

materials studied were not single-component. Decrease in Sp of

multiple-componentmaterial is possibly the result of relativelyrapid

dissolutionof one or more of the material componentsthat have relative high

Sp. The rapid dissolutionwould be the result of the high Sp and also

possibly the presence in the component of rapidly dissolvingamorphousor

crystallineuranium compounds that exist at concentrationsbelow the detection

limit of the x-ray diffractiontechnique used.

An additional importantfactor is the change of surface roughnesswith

time. Thibault28demonstratedthat even carefully polishedmetal surfaces

are not perfectly smooth. He was able to show a correlationbetween initial

dissolutionrates and the surface roughnessof materials cut from a single

block and polished or machined by differentmethods. After a few days, the

prominencesand channels produced by most mechanical treatmentshad

disappeared,and both the surface roughness and dissolutionrates tended to

have common values, independentof the method of polishing. Because the

particles produced by combustion are not smooth spheres,the surface roughness

may decrease as dissolutionproceeds,with prominenceson the particle

sufferingrapid initial attack.

The long-termdissolutionhalf-time associatedwith the respirable

fraction of study material S682-1 (bunker air sample) was significantlyhigher

(at the 95 per cent confidence level) than was the long-termdissolution

half-timeassociatedwith the respirablefraction of study material S682-2
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(bunkercore sample). Because the major differencebetween these materials

may be the result of elutriation,study material S682–1may consist of

particleswith lower settling velocitiesthan study material S682-2.

Consequently,for a given specific gravity, the Sp of study material S682-1

would be greater than the Sp of material S682-2. This greater Sp could

least partially account for the differenceobserved in the long-term

dissolutionhalf-timesassociatedwith the respirablefraction of these

materials.

The long-termdissolutionhalf-timeassociated

study material A774-2 was significantlyhigher (at

level) than was the long-termhalf-timeassociated

at

study

with respirablefraction of

the 95 per cent confidence

with the respirable

fractionmaterial N774-1. This difference is in conflict with the trend of

preparationtemperatureand 13“volubility”described by Steckle and

Cooke.14 The conflict may be because the temperaturerange for which the

Steckle and Cooke trend is described is greater than the range of temperatures

studied here. The long-termhalf-timedifferenceseen in this study may be

related to the different airflow conditionsunder which materials were

produced. As mentioned earlier, the no-airflowconditionseems to produce

material with a relativelygreater U02 abundance. A relativelyhigh U02

abundancewas also noticed in the bunker air sample material (S682-1)that was

associatedwith a relativelylow, long-termdissolutionhalf-time. This

finding suggests that there may be some relation between the depressionof

U308 productionand the long-termdissolutionhalf-time.

Another partial explanationfor the conflict may involve the variety of

crystallinephases and the range of stoichiometriesassociatedwith each phase

possible for uranium oxides between U02 and U03. Each of these phases,

and perhaps the different stoichiometrieswithin a phase, may dissolve at

different rates.

v. SUMMARY

The amount of material dissolving in the initial dissolutionphase and the

rate at which material dissolved in this phase were the determiningfactors in

assessingthe hazard potential associatedwith sample materials. The Ilyll

clearance classificationnormally associatedwith U308 and lJ02does not

adequatelydescribe the clearanceof depositedmaterial indicatedby in vitro

dissolutionanalysis. This discrepancyis especiallytrue for the bunker air

18



samplematerial (S682–1)of which ’25 per cent dissolvedwith a half–time

<6 h.—
The size segregationof compositionbetween bulk and respirablesamples

points out a potential pitfall in the evaluationof the dissolutionof

‘3°8 and ’02” Study of size fractions other than that which deposits in

the lungs can lead to incorrectconclusionsregardingthe effects of the

material’sphysical and chemical characteristicsupon dissolution.
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APPENDIX

DERIVATIONOF SPECIFIC SURFACE AREA BEHAVIOR AS A
AUGMENTINGMERCER’S CALCULATIONS

According to Mercer,11 the rate at which the mass of

dissolves is given by

d(m)/dt = -ks ,

FUNCTION OF TIME:

a particle

(A-1)

where m = the mass of the particle at time t, and s = the surface area of the

particle at time t. Using the relationships

m=avpD3

and

s =asD2 ,

where

= the diameter volume-shapefactor,av
= the diameter surface-shapefactor,as

P = the specific gravity of the material being dissolved,and

D = the particle diameter at time t.

Integrating,wefind that

s = SO[l - (kast/3avpDo)]2 ,

where s. = satt=O, andDo=Datt=O.

For a lognormaldistributionof aerosol particles hav

diameter Dm and geometric standarddeviation Uq at t = O,

ng a mass median

the total

(A-2)

(A-3)

(A-4)

surface area remaining after dissolvingfor a ~ime t, S(t), is given by

00
s(t) = [so/u(21r)1’21J(S/So)fw - [(x-xm+ u2)2/2u2]dx , (A-5)

‘t
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where

‘o = the total surface area at t = O,

a = Inu
9’

x = ‘nDo’
Xm = ln(Dm),

Xt = lnDt, and
Dt = the diameterof the particlesthat completelydissolve in time

t.

The relationbetween the surfacemedian diameter Ds and the mass median

diameter has been used: Ds = Dine-2. Substitutingwith Eqo A-4 and

expandingyields

(A-6)

where

f(y) = (21r)‘1/2exp(_y2/2), K. = 1, KI H -(2/3)8exp(1.5CJ2),

‘2 = 82exp(4U2)/9, B = askt/avpDm, and

Yi = (ln(f3/3)/a) + (l+i)a.

S/SO is shown in Fig. A-1 as a function of B for u = 0.85. Also shown in

Fig. A-1 is M/~ and Sp/Spo = (S/So)/(M/Mo)for u = 0.85. M/M. was

calculatedaccordingto Mercer.11

In Fig. A-2, Sp/Spo is plotted as a function of B for a = O, 0.1, 0.3,

0.5, and 0.85. For u < -0.028, Sp/Spo increasesuniformly,with Sp/Spo

going to infinity at B = 3. For -0.028 < c < ‘0.13, Sp/Spo increasest. a

maximum and then decreases,but never goes below 1. For -0.13 < u < -0.49,

Sp/Spo increasesto a maximum and then decreases below 1. Finally, for a >
-0.49, Sp/Spo decreasesuniformly.
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